Quantum Mechanics as a Classical Theory IX: The Formation of Operators and Quantum Phase-Space Densities

نویسنده

  • L. S. F. Olavo
چکیده

In our previous papers we were interested in making a reconstruction of quantum mechanics according to classical mechanics. In this paper we suspend this program for a while and turn our attention to a theme in the frontier of quantum mechanics itself—that is, the formation of operators. We then investigate all the subtleties involved in forming operators from their classical counterparts. We show, using the formalism of quantum phase-space distributions, that our formation method, which is equivalent to Weyl’s rule, gives the correct answer. Since this method implies that eigenstates are not dispersion-free we argue for modifications in the orthodox view. Many properties of the quantum phase-space distributions are also investigated and discussed in the realm of our classical approach. We then strengthen the conclusions of our previous papers that quantum mechanics is merely an extremely good approximation of classical statistical mechanics performed upon the configuration space. 1 The Formation of Quantum Operators The formation problem of quantum mechanical operators has already been treated by a number of authors [1, 2, 3, 4, 5, 6]. The problem resides basically in forming, from a given classical function f(q, p) of the commuting generalized coordinates and momenta, the related quantum mechanical operator O[f(p, q)]. This problem, as expressed in Shewell’s review article [3], either cannot be solved in a non-ambiguous way (e.g. von Neumann’s and Dirac’s rules) or it does not give the result expected by the orthodox epistemology of quantum mechanics, viz. Weyl’s and Revier’s rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دینامیک کوانتومی ذره جرم‌دار روی دوسیتر 3+1

 The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.

متن کامل

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

متن کامل

A quantum mechanical representation in phase space

A quantum mechanical representation suitable for studying the time evolution of quantum densities in phase space is proposed and examined in detail. This representation on 2'2 (2) phase space is based on definitions of the operators P and Q in phase space that satisfy various correspondences for the Liouville equation in classical and quantum phase space, as well as quantum position and momentu...

متن کامل

اثر برهم‌کنش‌های چهار اسپینی برروی سیمای فاز مدل هایزنبرگ J1-J2 پادفرومغناطیس اسپین 3/2 شبکه لانه زنبوری

In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order,...

متن کامل

نظم‌های مغناطیسی مدل هایزنبرگ j1-j2 پادفرومغناطیس شبکه‌ی لانه زنبوری در حضور برهم‌کنش ژیالوشینسکی-موریا

Motivated by recent experiments that detects Dzyaloshinskii-Moriya (DM) interaction in , we study the effects of DM interaction on magnetic orders of J1-J2 antiferromagnetic Heisenberg model. First, we find the classical phase diagram of the model using Luttinger-Tisza approximation. In this approximation, the classical phase diagram has two phases. For , the model has canted Neel and DM intera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008